# 习题 3.1

显然有

E(X)=0,σ=1E(X^*)=0,\sigma^*=1

根据ChebyshevChebyshev 不等式

P(XE(X)r)Var(X)r2P[XE(Xc]Var(X)c2P[X0c]1c2P[Xc]1c2P(|X-E(X)| \geq r) \leq \frac{Var(X)}{r^2} \Rightarrow P[|X^*-E(X^*)|\geq c]\leq\frac{Var(X^*)}{c^2}\\ \Rightarrow P[|X^*-0|\geq c]\leq\frac{1}{c^2}\Rightarrow P[|X^*|\geq c]\leq\frac{1}{c^2}

因此得证

# 习题 3.2

显然X=Sn\overline X = \frac{S}{n}

xix_i 之间相互独立时,S/nS/n 的期望等于 xix_i 的期望,方差等于 xix_i 的方差除以 nn​。

  • X\overline X 的期望

    显然,E(aX)=aE(X)E(Sn)=1nE(S)=1n(E(x1)+E(x2)++E(xn))=1n(nμ)(每个xi都来自同一分布,并且该分布的期望为μ)=μ显然,E(aX)=aE(X)\\ \begin{align*} E\left(\frac{S}{n}\right) &= \frac{1}{n}E(S) \\ &= \frac{1}{n}(E(x_1) + E(x_2) + \ldots + E(x_n)) \\ &= \frac{1}{n}(n\mu) \quad \text{(每个} \: x_i \: \text{都来自同一分布,并且该分布的期望为} \: \mu) \\ &= \mu \end{align*}

  • X\overline X 的方差

    Var(Sn)=1n2Var(S)=1n2(Var(x1)+Var(x2)++Var(xn))=1n2(nσ2)(每个xi都来自同一分布,并且该分布的方差为σ2)=σ2n\begin{align*} \text{Var}\left(\frac{S}{n}\right) &= \frac{1}{n^2}\text{Var}(S) \\ &= \frac{1}{n^2}(\text{Var}(x_1) + \text{Var}(x_2) + \ldots + \text{Var}(x_n)) \\ &= \frac{1}{n^2}(n\sigma^2) \quad \text{(每个} \: x_i \: \text{都来自同一分布,并且该分布的方差为} \: \sigma^2) \\ &= \frac{\sigma^2}{n} \end{align*}

则根据ChebyshevChebyshev 不等式

P[Xμϵ]=P[XE(X)ϵ]Var(X)ϵ2=P[Xμϵ]σ2nϵ2\begin{align*} P[|\overline X - \mu| \geq \epsilon] &= P[|\overline X - E(\overline X)| \geq \epsilon] \leq \frac{Var(\overline X)}{\epsilon^2}\\ &= P[|\overline X - \mu| \geq \epsilon] \leq \frac{\sigma^2}{n\epsilon^2} \end{align*}

因此得证

# 习题 3.3

由均匀硬币知,E(X)=12nE(X)=\frac{1}{2}n,Var(X)=14nVar(X)=\frac{1}{4}n

令随机变量 Y 定义为反面朝上的次数,E(Y)=12nE(Y)=\frac{1}{2}n,Var(Y)=14nVar(Y)=\frac{1}{4}n

# (1)

显然X<n4=Y3n4X<\frac{n}{4} = Y \geq \frac{3n}{4}

P(Y3n4)=P(Yn34)=P(Yn1214)P(Yn1214)4n\begin{align*} P(Y \geq \frac{3n}{4})&=P(\frac{Y}{n}\geq\frac{3}{4} )\\ &=P(\frac{Y}{n}-\frac 1 2\geq\frac{1}{4} )\\ &\leq P(|\frac{Y}{n}-\frac 1 2|\geq\frac{1}{4})\\ &\leq \frac{4}{n} \end{align*}

# (2)

P(X<n4)=P(X<(112)n2)=P(X<(112)E(X))<exp(n2(12)2/2)=exp(n16)\begin{align*} P(X<\frac n 4) &= P(X < (1-\frac 1 2)\frac n 2)\\ &= P(X<(1-\frac 1 2)E(X))\\ &< exp(- \frac n 2 (\frac 1 2)^2 / 2)\\ &= exp(-\frac {n}{16}) \end{align*}

# 习题 3.4

# (1)

根据指数函数的递增性,有

X>(1+δ)μetX>et(1+δ)μX> (1+\delta)\mu \Leftrightarrow e^{tX} > e^{t(1+\delta)\mu}

MarkovMarkov​不等式得

P[etX>et(1+δ)μ]<E(etX)et(1+δ)μP[e^{tX} > e^{t(1+\delta)\mu}] < \frac{E(e^{tX})}{e^{t(1+\delta)\mu}}

随后计算E[etX]E[e^{tX}]:

E[etX]=E[eti=1nXi]=E[i=1netXi]=i=1nE[etXi](Xi相互独立)\begin{align*} E[e^{tX}]&=E[e^{t\sum_{i=1}^{n}X_i}]\\ &=E[\prod\limits_{i=1}^{n} e^{tX_i}]\\ &=\prod\limits_{i=1}^{n}E[e^{tX_i}] \quad(X_i相互独立) \end{align*}

由题干得Xi=1,P(Xi=1)=piX_i=1,P(X_i=1)=p_i;Xi=0,P(Xi=0)=1piX_i=0,P(X_i=0)=1-p_i

则证明μ=E(X)\mu = E(X),有:

E(X)=(E(X1)+E(X2)++E(Xn))=(p1X1+p2X2++pnXn)+[(1p1)X1+(1p2)X2++(1pn)Xn]=p1+p2++pn(Xi=1时概率为pi,Xi=0时概率为1pi)=i=1npi=μ\begin{align*} E(X)&=(E(X_1)+E(X_2)+\cdots+E(X_n))\\ &=(p_1X_1+p_2X_2+\cdots+p_nX_n)+[(1-p_1)X_1+(1-p_2)X_2+\cdots+(1-p_n)X_n]\\ &=p_1+p_2+\cdots+p_n \quad (X_i=1\text{时概率为}p_i,X_i=0\text{时概率为}1-p_i)\\ &= \sum \limits_{i=1}^{n} p_i\\ &= \mu \end{align*}

因为E[etXi]E[e^{tX_i}] 可以计算为

E[etXi]=piet+(1pi)e0=pi(et1)+1epi(et1)(根据泰勒展开式,当y>0时,有ey1+y)\begin{align*} E[e^{tX_i}]&=p_i·e^t+(1-p_i)·e^0\\ &=p_i(e^t-1)+1\\ &\leq e^{p_i(e^t-1)}\quad(根据泰勒展开式,当y>0时,有e^y\geq1+y) \end{align*}

因此

E[etX]i=1nepi(et1)=e(et1)i=1npi=e(et1)μ\begin{align*} E[e^{tX}]&\leq \prod\limits_{i=1}^{n} e^{p_i(e^t-1)}\\ &=e^{(e^t-1)\sum\limits_{i=1}^{n}p_i}\\ &=e^{(e^t-1)\mu} \end{align*}

代回原来的 $$Markov$$​不等式中

P[etX>et(1+δ)μ]<E(etX)et(1+δ)μe(et1)μet(1+δ)μ=(e(et1)et(1+δ))μ\begin{align*} P[e^{tX} > e^{t(1+\delta)\mu}] &< \frac{E(e^{tX})}{e^{t(1+\delta)\mu}}\\ &\leq \frac{e^{(e^t-1)\mu}}{e^{t(1+\delta)\mu}}\\ &=(\frac{e^{(e^t-1)}}{e^{t(1+\delta)}})^\mu \end{align*}

t=ln(1+δ)t = ln(1+\delta),得到

P(X>(1+δ)μ)<(eδ(1+δ)(1+δ))μP(X>(1+\delta)\mu)<(\frac{e^\delta}{(1+\delta)^(1+\delta)})^\mu

# (2)

由 (1) 知μ=E(X)\mu = E(X), 且

P(X>(1+δ)μ)<(eδ(1+δ)(1+δ))μP(X>(1+\delta)\mu)<(\frac{e^\delta}{(1+\delta)^(1+\delta)})^\mu

运用泰勒展开式将关于δ\delta 的函数ln(1+δ)ln(1+\delta) 在零点展开

1ln(1+δ)1δ(112δ)=1δ+12δδϵ[0,1]时,有1δ+12δ1δ+12所以可得1ln(1+δ)1δ+12ln(1+δ)2δ2+δ\frac{1}{ln(1+\delta)}\leq \frac{1}{\delta(1-\frac{1}{2}\delta)}=\frac 1 \delta+\frac 1 {2-\delta}\\ 当\delta\epsilon[0,1]时,有 \frac 1 \delta+\frac 1 {2-\delta} \leq \frac 1 \delta + \frac 1 2\\ 所以可得\\ \frac{1}{ln(1+\delta)}\leq\frac 1 \delta + \frac 1 2\\ ln(1+\delta) \geq \frac{2\delta}{2+\delta}

所以,

[δ(1+δ)ln(1+δ)]δ22+δ\begin{align*} [\delta-(1+\delta)ln(1+\delta)]\leq -\frac{\delta^2}{2+\delta} \end{align*}

即:

(eδ(1+δ)(1+δ))μeδ22+δ(\frac{e^\delta}{(1+\delta)^(1+\delta)})^\mu \leq e^{-\frac{\delta^2}{2+\delta}}

进一步,因为δ\delta 属于 (0,1)

P(X>(1+δ)μ)<(eδ(1+δ)(1+δ))μeδ22+δ<eδ23\begin{align*} P(X>(1+\delta)\mu)&<(\frac{e^\delta}{(1+\delta)^(1+\delta)})^\mu \leq e^{-\frac{\delta^2}{2+\delta}} < e^{-\frac{\delta^2}{3}} \end{align*}

# 习题 3.5

由习题 3.4 可知,μ=E(X)\mu = E(X) 成立

P(Xμ>δμ)=P(X>(1+δ)μ)P(X<(1δ)μ)\begin{align*} P(|X-\mu|>\delta\mu) &= P(X> (1+\delta)\mu)或P(X<(1-\delta)\mu) \end{align*}

ChernoffChernoff 不等式可知

P(X>(1+δ)μ)<exp(μδ23)P(X<(1δ)μ)<exp(μδ22)<exp(μδ23)P(X> (1+\delta)\mu) < exp(\frac{-\mu\delta^2}{3})\\ P(X<(1-\delta)\mu) < exp(\frac {-\mu\delta^2}{2}) <exp(\frac{-\mu\delta^2}{3})

因此

P(Xμ>δμ)=P(X>(1+δ)μ)P(X<(1δ)μ)<exp(μδ23)+exp(μδ22)<exp(μδ23)+exp(μδ23)=2exp(μδ23)\begin{align*} P(|X-\mu|>\delta\mu) &= P(X> (1+\delta)\mu)或P(X<(1-\delta)\mu)\\ &<exp(\frac{-\mu\delta^2}{3})+exp(\frac {-\mu\delta^2}{2})\\ &<exp(\frac{-\mu\delta^2}{3})+exp(\frac {-\mu\delta^2}{3})\\ &=2exp(\frac{-\mu\delta^2}{3}) \end{align*}

# 习题 3.6

E(X)=E(1ni=1nXi)=1ni=1nE(Xi)由于每个Xi都是伯努利分布,其期望值为p,因此:E(X)=1ni=1np=pE(\overline X)=E(\frac 1 n \sum\limits_{i=1}^{n} X_i)=\frac 1 n \sum\limits_{i=1}^{n}E(X_i)\\ 由于每个X_i都是伯努利分布,其期望值为p,因此:\\ E(\overline X)= \frac 1 n\sum\limits_{i=1}^{n}p=p

根据HoeffdingHoeffding 不等式

P(XE(X)t)2exp(2t2n2i=1n(biai)2)P(|\overline X - E(\overline X)|\geq t)\leq 2 exp(-\frac{2t^2n^2}{\sum_{i=1}^{n}(b_i-a_i)^2})

则有

P(Xpϵp)=P(XE(X)ϵp)2exp(2ϵ2p2n2n)=2exp(2ϵ2p2n)\begin{align*} P(|\overline X - p| \geq \epsilon p) = P(|\overline X - E(\overline X)| \geq \epsilon p) &\leq 2exp(-\frac{2\epsilon^2p^2n^2}{n})\\ &=2exp(-2\epsilon^2p^2n)\\ \end{align*}

P(Xpϵp)=1P(Xpϵp)12exp(2ϵ2p2n)P(|\overline X-p|\leq \epsilon p)= 1-P(|\overline X - p| \geq \epsilon p) \geq 1-2exp(-2\epsilon^2p^2n)\\

即证明

12exp(2ϵ2p2n)1δ2exp(2ϵ2p2n)δ1-2exp(-2\epsilon^2p^2n) \geq 1 - \delta \Rightarrow 2exp(-2\epsilon^2p^2n) \leq \delta\\

2ϵ2p2nln(δ/2)nln(δ/2)2ϵ2p2=ln(2/δ)2ϵ2p2-2\epsilon^2p^2n \leq ln(\delta/2)\\ n \geq \frac{-ln(\delta/2)}{2\epsilon^2p^2} = \frac{ln(2/\delta)}{2\epsilon^2p^2}